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Abstract

Attention, the ability to focus on relevant information, is known to aid hu-
man visual perception. But the cognitive-science literature lacks a systematic
characterisation of how the impact of attention varies with the nature of a vi-
sual task. Happily, recent work has shown that deep convolutional neural net-
works are state-of-the-art models of the human visual system, meaning we can
use them to conduct instructive large-scale studies. By training and evaluat-
ing more than 90 attention-augmented networks, we test the hypothesis that
a visual task’s difficulty, size and perceptual similarity affect the usefulness of
attention (the performance improvement that attention produces). Each task
we consider is defined by a category set (a group of image categories); learn-
ing to apply attention to a particular category set represents a distinct cognitive
task. We show that usefulness correlates positively and strongly (β1 = 0.30,
R2 = 0.92) with category-set difficulty, negatively and strongly (β1 = −0.04,
R2 = 0.94) with category-set size (on a logarithmic scale), and negatively and
weakly (β1 = −0.11, R2 = 0.37) with the visual similarity within a category set.
The first two relationships agree with our intuitions, but the third does not (we
expected a positive correlation). These findings serve to inform not only basic
research in cognitive science but also practical applications of visual attention
in deep-learning systems.
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1 Introduction

Opening our eyes, we are overwhelmed with information. Yet we effortlessly
understand the visual world. We apply attention, separating the relevant from
the irrelevant. Visual attention strongly shapes our perception: even with a
fixed retinal image, a change in attentional state can influence neural activity
in the visual cortex, and can enhance perceptual abilities (Carrasco, 2011).
So a comprehensive theory of attention is key if we are to fully understand
vision. In this work we show that large-scale computational modelling, recently
made practicable by faster computers, allows us to characterise when attention
works, better equipping us to understand how it works.

It intuitively feels like we need visual attention some times more than oth-
ers: filtering out irrelevant information seems more important in busy envi-
ronments, for instance. Our aim is to empirically and systematically test this
intuition. We focus on image recognition, in which the aim is to classify images
into categories as accurately as possible. We take a state-of-the-art computer
model of human vision, and incorporate visual attention as a reweighting of
the model’s representations of visual stimuli (Section 3.2). Then we train and
evaluate this model on a series of carefully designed tasks.

Each task we consider is defined by a category set (a group of image categories;
Section 3.1); learning to apply attention to a particular category set represents
a distinct cognitive task. In order to rigorously establish how the nature of a
task influences the usefulness of attention (the accuracy boost it provides on
the task), we define quantitative dimensions along which a task can vary. We
call these category-set properties and consider three of them in this work:

1. Difficulty (average error rate of an industry-standard image-recognition
system on examples in the category set)

2. Size (number of categories in the category set)

3. Visual similarity (average similarity in the way a computer model of hu-
man vision ‘sees’ images in the category set)

Our hypothesis is that each of these is important in determining how useful
visual attention is in a task. Intuitively this seems to be true. Think of trying
to spot a friend in a train station. It seems like applying attention would be
more useful if the station were busy rather than empty (ie, visual clutter, a
component of task difficulty, matters). Attending to particular visual features
might be particularly useful if we knew that our friend was wearing a red coat,
allowing us to narrow down our visual search (ie, task size matters). And it
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feels like an eye for detail would be more useful if, by some freak event of
bad luck, everyone else in the station looked just like your friend (ie, visual
similarity matters).

Results from an initial experiment suggest that our hypothesis might hold. The
usefulness of attention varies between visual tasks (Figure 10), and those tasks
vary substantially with respect to the category-set properties defined above
(Figure 11). Visual inspection of Figures 10 and 11, as well as statistical analy-
sis (Table 2), suggests there could be a link between the usefulness of attention
and the category-set properties. But these results are insufficient evidence to
confidently claim that there is a relationship. Furthermore, we seek to establish
not just the existence of a relationship, but also to understand its nature.

Our main experiments, described in Section 3, shed much more light on this
relationship. In each experiment we train a series of attention-augmented neu-
ral networks (our models of human vision). Each attention network is trained
solely on examples from a single category set. Its accuracy is then compared to
that of a fixed, attention-free network (our baseline). We control the proper-
ties of the category sets used to train the networks, and then observe how the
impact of attention varies. By training and evaluating more than 90 attention
models, we gather a large collection of evidence to assess our hypothesis.

Why is this work important? Despite being studied for over a century, visual
attention is still not well characterised from a computational perspective (Car-
rasco, 2011). At the same time, recent work has shown that particular neural
networks are state-of-the-art models of the human visual system (Yamins and
DiCarlo, 2016). We seize the opportunity to use these models to study atten-
tion at a higher level of sophistication than previously possible and thus advance
scientific understanding of it. Aside from informing basic research, better char-
acterisation of attention could influence the way we apply neural networks to
solve practical problems. When we develop a new machine-learning system,
we make design decisions informed by accumulated knowledge, both empir-
ical and intuitive. With more knowledge, we waste less time exploring the
tradeoffs associated with a design feature. Furthermore, if an attention mecha-
nism is designed to emulate its functional counterpart in the human brain, the
neural network might make more human-like errors. If this improves the inter-
pretability of a neural network’s behaviour, this is valuable (Gilpin et al, 2018).
Thus, our contribution is relevant both to theory and to practical applications.
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2 Background

In our experiments we use neural networks to model attention in the human vi-
sual system. Understanding our method requires some background knowledge
of key ideas. First are the principles of feedforward and convolutional net-
works. With a conceptual grasp of these, we can discuss VGG16, the particular
instance of convolutional network that we use. Closely related is ImageNet, the
dataset for which VGG16 was designed. VGG16, and networks like it, are used
in computational cognitive science to model human cognitive functions like vi-
sion. Particularly connected to our contribution is work on the use of neural
networks to model visual attention. A review of this shows that the research
question we aim to answer is both relevant and interesting.

2.1 Neural networks

The study of neural networks, computer programs whose design is inspired by
biological brains, dates back to at least the 1940s (McCulloch and Pitts, 1943;
Hebb, 1949). Their theoretical potential was well established by the late twen-
tieth century (Cybenko, 1989; Hornik et al, 1989). Relatively recent, however,
is the ability to train a deep neural network (ie, build a many-layered network
and optimise it for a specific task) with a reasonable amount of time and com-
puting power (Hinton et al, 2006). Deep networks now represent the state of
the art in tasks ranging from the automatic translation of foreign languages
(Sutskever et al, 2014) to the generation of natural-sounding synthetic speech
(van den Oord et al, 2016).

Feedforward networks

A feedforward neural network is a mathematical function mapping input to
output through a series of simpler functions, organised in layers (Goodfellow
et al, 2016). Let fθ be a network that maps a vector input, x , to an output, y ,
through L hidden layers, h1, . . . , hL (Figure 1). The activity at the first hidden
layer is computed by taking x and applying an affine transformation (multiply-
ing by a weight matrix, W1, and adding a bias vector, b1) followed by a transfer
function, g1:

h1 = g1(W1 x + b1) (1)
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The activity of each subsequent layer is a function of the layer before it:

hl = gl(Wlhl−1 + bl) for l ∈ [2, L] (2)

fθ (x) = gL(WLhL−1 + bL) (3)

where Wl ∈ Rdl×dl−1 and bl ∈ Rdl , with dl = dim(hl). A deep network is simply
one with many layers.

The parameters of a network, θ = {(W1, b1), (W2, b2), . . . , (WL , bL)}, control
the input-output mapping, and are tuneable. The performance of a network is
measured using a loss function, J . Learning is the process of tuning θ such that
J is minimised. This is typically achieved through gradient-based optimisation.
First, automatic differentiation is used to compute∇θ J , the gradient of the loss
with respect to the network parameters. Second, a small change is made to θ
in the direction of greatest reduction in J :

θt+1 = θt −α∇θ J (4)

where t denotes the time step and α denotes the learning rate. If the exact
gradient is computed using all examples in the training set (the collection of
(x , y) pairs used to train the network), this update to θ is called gradient de-
scent. If an approximate gradient is computed using only a sample of training
examples, it is called stochastic gradient descent.
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Figure 1: A feedforward neural network. This is a mathematical function transforming x to y
through a series of hidden layers, h1, . . . , hL . The activity at each layer is computed by taking the
activity of the previous layer and applying an affine transformation followed by a (typically non-
linear) transfer function. The parameters of the network, θ = {(W1, b1), (W2, b2), . . . , (WL , bL)},
control the input-output mapping, and are tuneable.
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Convolutional networks

A convolutional neural network is a network specialised for input data that
has a grid-like structure (Goodfellow et al, 2016). This type of network de-
rives its name from the convolution operation that it uses in at least one layer.
Let I be a two-dimensional array of values representing an image, and K be
a two-dimensional filter (an array of tuneable weights). The feature map, F ,
produced by the convolution of I with K is given by

Fi, j = (I ∗ K)i, j =
∑

m

∑

n

Ii−m, j−nKm,n (5)

Intuitively, convolving I with K involves sliding the filter across the width and
height of I . At each position the dot product is taken between K and the el-
ements of I over which K floats (Figure 2). As in feedforward networks, this
linear operation is typically followed by adding a bias and applying a nonlinear
transfer function.
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Figure 2: The convolution operation in two dimensions. Computing the output feature map,
F = I ∗ K , involves sliding an array of weights, K , to each position on the input array, I . At each
location the dot product is performed between K and the elements of I over which K floats.
Drawing inspired by Velickovic (2018).

It is common to also use pooling operations (Figure 3) in convolutional net-
works. Pooling is similar to convolving: a window slides to each position in an
input array, I , and performs an operation on the elements of I that it covers.
The difference is that the operation is nonparametric, typically an aggregation
such as the maximum or mean value in a local area.

Feedforward networks canonically operate on vectors. In contrast, at layer l in
a convolutional network, a two-dimensional image is typically represented as a
Hl×Wl×Cl tensor, where Hl is the height, Wl is the width and Cl is the number
of channels. Each channel represents a distinct visual feature of the input
image. Slicing the tensor along the third dimension, it can be viewed as a set of
Cl feature maps, each representing how strongly a feature is present at different
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Figure 3: Pooling operations in two dimensions. A window slides to each position an input array,
I . At each location a statistical summary of the covered elements of I is computed.

locations. A convolutional network typically comprises a series of convolutional
layers followed by at least one standard feedforward layer (Figure 4).

The design of convolutional networks encodes assumptions about the input
data. In vision applications, two assumptions are commonly cited (Krizhevsky
et al, 2012). First is that locality matters: the information content of one lo-
cation in the input tells us something about the content of an adjacent loca-
tion. This property is reflected by the use of locally, rather than fully, connected
neurons in convolutional layers. In a feedforward network each layer is fully
connected: each neuron in layer l is connected to every neuron in layer l − 1.
In a convolutional layer, each neuron in layer l is only connected to a local
rectangular area (receptive field) in layer l − 1. Second is translation invari-
ance, meaning that an object’s appearance is independent of location. This is
realised by the use of weight sharing in convolutional layers. Each feature map
is computed using a single filter applied to the whole input, not a collection of
separate filters assigned to distinct locations.

pooling pooling fully-connectedconvolutioninput convolution output

Figure 4: A convolutional neural network for processing images. Convolutional layers represent
two-dimensional images as three-dimensional tensors. Slicing a tensor representation along the
third dimension, it can be viewed as a collection of feature maps. Each map encodes the variation
of a visual feature with respect to space. Typically at least one fully-connected layer precedes
the output neurons. Drawing from Hill (2017).

Empirical studies have demonstrated how strong the built-in bias of convolu-
tional networks is, and how appropriate it is for images (Saxe et al, 2011). Even
with randomised filters, a single convolutional layer—comprising convolution,
nonlinearity, normalisation and mean pooling—extracts features with which a
linear classifier can achieve 53% accuracy on Caltech101, an image-recognition
dataset with 101 classes (Jarrett et al, 2009).
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2.2 ImageNet

The popularity of convolutional networks today can be traced back to the in-
troduction of a new image-recognition benchmark in 2009. In its full form,
ImageNet is a dataset comprising over 14 million images, each belonging to
one of roughly 22,000 categories (Deng et al, 2009). Categories are organised
according to the conceptual hierarchy of WordNet, a language dataset (Figure
5; Miller, 1995).
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Figure 5: A subset of ImageNet categories, organised according to the hierarchical semantic
structure of WordNet. Each leaf node is a category. Drawing from Bostock (2018).

Approximately 10 percent of these images, belonging to 1000 categories, were
used for the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC;
Russakovsky et al, 2014) from 2010 to 2017. The ILSVRC dataset is divided
into three parts. The training set, with around 1.2 million images, is intended
for training algorithms. The 50,000-image public test set is readily accessible
and so can be used at any time to measure the performance of trained algo-
rithms. A final 150,000 images form the private test set, which is reserved
for evaluating performance in the competition setting. Henceforth the 2012
version of the ILSVRC dataset is what we mean when we refer to ImageNet.
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2.3 VGG16

VGG16 (Figure 6) is a convolutional neural network proposed by Simonyan
and Zisserman (2015) to compete in the 2014 ImageNet challenge. Compared
to top-performing networks in previous competitions, this has two key design
features. First, it is deep. It has 16 layers, twice as many as AlexNet (Krizhevsky
et al, 2012). Second, it is simple. Whereas AlexNet uses convolutional filters
ranging in size from 11× 11 to 3× 3, VGG16 uses 3× 3 throughout.
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Figure 6: The structure of VGG16. This is a convolutional neural network whose distinctive
features are its depth (16 layers) and its use of small 3 × 3 convolutional filters throughout.
VGG16 takes as input an image 224 pixels tall, 224 pixels wide and with three channels (red,
green, blue). Moving forwards through the convolutional layers, the tensor representation of
the input becomes smaller in its spatial dimensions but larger in its channel dimension. The
output of the fifth convolutional block is flattened into a vector before being passed through
three fully-connected layers. The output of the last fully-connected layer is passed to a softmax
function. The result is a probability distribution over the 1000 ImageNet category labels.

Combining these design features leads to more efficient use of network param-
eters. A stack of three 3× 3 convolutional layers, without pooling in between,
has an effective receptive field of 7×7. But whereas a 7×7 convolutional layer
has a single nonlinearity, the stack of 3×3 layers has three. Thus, for an equiv-
alent receptive field, the stack can achieve greater representational capacity. It
also uses fewer parameters. If each filter in this example has C channels, the
stack uses 27C2 weights, and the single 7× 7 layer uses 49C2.

2.4 Computational models of cognition

Following the successful application of neural networks to image-recognition
tasks like the ImageNet challenge, a growing body of work has analysed how
such networks represent visual stimuli and how these representations relate
to those recorded in biological brains (Yamins and DiCarlo, 2016). Neural net-
works have been found to produce remarkably similar representations to those
in primate brains (Schrimpf et al, 2017). These computer programs can thus
serve as a useful model of the biological systems that originally informed their
invention. This is a clear demonstration of a virtuous cycle in which neuro-
science informs machine learning and vice versa (Hassabis et al, 2017).
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It is important to clarify what it means for a neural network to model the brain.
Marr and Poggio (1977) argued that information-processing systems can be de-
composed into levels of abstraction that are mostly independent of each other
and should be studied as such. Marr (1982) identified three levels of analysis.
First is the computational, specifying what the system does—the mapping it
performs of one form of information to another—and why. Second is the algo-
rithmic, describing how the system represents and manipulates information to
perform its function. Third is the implementational, concerning how the system
is realised in hardware.REVIEW ARTICLE NATURE NEUROSCIENCE

In this section, we considered three types of model that can 
help us glean computational insight from brain-activity data. 
Connectivity models capture aspects of the dynamic interactions 
between regions. Decoding models enable us to look into brain 
regions and reveal what might be their representational content. 
Representational models enable us to test explicit hypotheses 
that fully characterize a region’s representational space. All three 
types of model can be used to address theoretically motivated 
questions—taking a hypothesis-driven approach. However, in 
the absence of task-performing computational models, they are 
subject to Newell’s argument that asking a series of questions 
might never reveal the computational mechanism underlying 
the cognitive feat we are trying to explain. These methods fall 
short of building the bridge all the way to theory because they 
do not test mechanistic models that specify precisely how the 
information processing underlying some cognitive function 
might work.

From theory to experiment
To build a better bridge between experiment and theory, we first 
need to fully specify a theory. This can be achieved by defining 
the theory mathematically and implementing it in a computa-
tional model (Box 1). Computational models can reside at different  
levels of description, trading off cognitive fidelity against bio-
logical fidelity (Fig. 3). Models designed to capture only neuronal 
components and dynamics71 tend to be unsuccessful at explaining  
cognitive function72 (Fig. 3, horizontal axis). Conversely, models 
designed to capture only cognitive functions are difficult to relate to 
the brain (Fig. 3, vertical axis). To link mind and brain, models must 
attempt to capture aspects of both behavior and neuronal dynam-
ics. Recent advances suggest that constraints from the brain can 
help explain cognitive function42,73,74 and vice versa37,38, turning the  
tradeoff into a synergy.

In this section, we focus on recent successes with task-perform-
ing models that explain cognitive functions in terms of representa-
tions and algorithms. Task-performing models have been central to 
psychophysics and cognitive science, where they are traditionally 
tested with behavioral data. An emerging literature is beginning to 
test task-performing models with brain-activity data as well. We will 
consider two broad classes of model in turn, neural network models 
and cognitive models.

Neural network models. Neural network models (Box 2) have a 
long history, with interwoven strands in multiple disciplines. In com-
putational neuroscience, neural network models, at various levels 
of biological detail, have been essential to understanding dynamics 
in biological neural networks and elementary computational func-
tions27,28. In cognitive science, they defined a new paradigm for under-
standing cognitive functions, called parallel distributed processing, 
in the 1980s6,75, which brought the field closer to neuroscience. In 
AI, they have recently brought substantial advances in a number of 
applications42,74, ranging from perceptual tasks (such as vision and 
speech recognition) to symbolic processing challenges (such as lan-
guage translation), and on to motor tasks (including speech synthesis 
and robotic control). Neural network models provide a common lan-
guage for building task-performing models that meet the combined 
criteria for success of the three disciplines (Fig. 2).

Like brains, neural network models can perform feedforward as 
well as recurrent computations37,76. The models driving the recent 
advances are deep in the sense that they comprise multiple stages of 
linear-nonlinear signal transformation. Models typically have mil-
lions of parameters (the connection weights), which are set so as 
to optimize task performance. One successful paradigm is super-
vised learning, wherein a desired mapping from inputs to outputs is 
learned from a training set of inputs (for example, images) and asso-
ciated outputs (for example, category labels). However, neural net-
work models can also be trained without supervision and can learn 
complex statistical structure inherent to their experiential data.

The large number of parameters creates unease among research-
ers who are used to simple models with small numbers of inter-
pretable parameters. However, simple models will never enable 
us to explain complex feats of intelligence. The history of AI has 
shown that intelligence requires ample world knowledge and suf-
ficient parametric complexity to store it. We therefore must engage 
complex models (Fig. 3) and the challenges they pose. One chal-
lenge is that the high parameter count renders the models difficult 
to understand. Because the models are entirely transparent, they 
can be probed cheaply with millions of input patterns to under-
stand the internal representations, an approach sometimes called 
‘synthetic neurophysiology’. To address the concern of overfitting, 
models are evaluated in terms of their generalization performance. 
A vision model, for example, will be evaluated in terms of its ability 
to predict neural activity and behavioral responses for images it has 
not been trained on.
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Fig. 3 | The space of process models. Models of the processes taking place 
in the brain can be defined at different levels of description and can vary 
in their parametric complexity (dot size) and in their biological (horizontal 
axis) and cognitive (vertical axis) fidelity. Theoreticians approach modeling 
with a range of primary goals. The bottom-up approach to modeling (blue 
arrow) aims first to capture characteristics of biological neural networks, 
such as action potentials and interactions among multiple compartments 
of single neurons. This approach disregards cognitive function so as to 
focus on understanding the emergent dynamics of small parts of the brain, 
such as cortical columns and areas, and to reproduce biological network 
phenomena, such as oscillations. The top-down approach (red arrow) aims 
first to capture cognitive functions at the algorithmic level. This approach 
disregards the biological implementation so as to focus on decomposing 
the information processing underlying task performance into its algorithmic 
components. The two approaches form the extremes of a continuum of 
paths toward the common goal of explaining how our brains give rise to our 
minds. Overall, there is tradeoff (negative correlation) between cognitive 
and biological fidelity. However, the tradeoff can turn into a synergy 
(positive correlation) when cognitive constraints illuminate biological 
function and when biology inspires models that explain cognitive feats. 
Because intelligence requires rich world knowledge, models of human 
brain information processing will have high parametric complexity (large 
dot in the upper right corner). Even if models that abstract from biological 
details can explain task performance, biologically detailed models will still 
be needed to explain the neurobiological implementation. This diagram is a 
conceptual cartoon that can help us understand the relationships between 
models and appreciate their complementary contributions. However, it is 
not based on quantitative measures of cognitive fidelity, biological fidelity 
and model complexity. Definitive ways to measure each of the three 
variables have yet to be developed. Figure inspired by ref. 122.
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Figure 7: Computational models of cognition. A model can vary in its level of abstraction,
its complexity (number of parameters), and its biological and cognitive fidelity. Bottom-up
approaches to modelling emphasise the implementational details of neurons. Top-down ap-
proaches focus on the algorithmic form of cognitive functions. With current models there is
a tradeoff to be made between high-level and low-level realism. The long-term aim of com-
putational cognitive science is to create a model that sits in the upper-right corner. This will
necessarily have the high complexity of the brain, represented by a large grey dot. Drawing
from Kriegeskorte and Douglas (2018).

Even if a neural network does not closely resemble a brain in its implemen-
tation, it can be a useful proxy for cognition at higher levels of abstraction
(Figure 7; Kriegeskorte and Douglas, 2018). Indeed, this is the core pursuit of
computational cognitive science: to build computer models that perform real-
world cognitive tasks, with the aim of explaining measured neural activity and
human behaviour.

2.5 Visual attention

Attention shapes visual perception by modulating neural activity (Lindsay and
Miller, 2018). Viewed as a single mechanism, it is highly flexible. We can
attend by location (Eriksen and St James, 1986), by visual feature (Liu and Hou,
2011), by object (Olson, 2001), by moment in time (Nobre, 2001). A vast body
of literature covers this topic (Carrasco, 2011). This includes neural-network-
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based modelling of attention since at least as far back as the 1990s (Kruschke,
1992). Most relevant to our work are examples of using deep networks to
model visual attention.

Spatial attention, in which focus is directed according to location, has been
a popular area of research. A common way of implementing this is to frame
vision as a task of combining information collected in a series of high-resolution
glimpses, with an attention mechanism determining where to look (Larochelle
and Hinton, 2010; Denil et al, 2012; Mnih et al, 2014; Ranzato, 2014; Ba et al,
2015). The spatial-transformer module proposed by Jaderberg et al (2015) is
related to these approaches in the sense that it adaptively manipulates incoming
information and is controlled with respect to location.

Non-spatial forms of attention have been studied significantly less. One exam-
ple is feature-based attention, in which information is emphasised according
to the attributes of an image instead of location. Stollenga et al (2014) de-
veloped a system that learns to sequentially process an image, using feedback
loops between neural-network layers to dynamically weight the feature maps it
extracts. In a related but purely feedforward approach, Lindsay (2015) incor-
porated feature-based attention into a convolutional network. In the proposed
network, category-specific feature weightings are computed using the average
response of features to images in that category. These are then used to modu-
late the network’s representations at runtime. Chen et al (2017) blended both
location-based and feature-based modulation of neural representations. When
applied to VGG19 and ResNet, two popular convolutional networks, their model
produced state-of-the-art performance on image-captioning tasks.

2.6 Moving forward

What can we conclude from what we have discussed? On the one hand, vi-
sual attention is still not fully characterised from a computational perspective.
On the other, computer models of human vision are better than they have ever
been. In this work, we aim to address the first fact with the second. Our ap-
proach to modelling attention builds on the work of others, particularly Chen
et al (2017) and Lindsay and Miller (2018). The question we aim to answer—
when is visual attention useful?—is a pertinent one. To our knowledge, the
resulting work is a novel contribution to the study of visual attention.
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3 Method

Our work is centred on a simple question: when is visual attention useful?
Our approach is to work out how the nature of a task determines the extent to
which attention can improve image-classification accuracy. The task we study
is that of learning to apply attention in an image-recognition setting, where
examples are drawn from a particular category set (grouping of ImageNet cat-
egories). By manipulating the properties (difficulty, size, visual similarity) of a
category set, we control the nature of the task. For each category set, we train
an attention network to classify images from the category set. We then compare
the classification accuracy of the attention network to a standard VGG16. Our
approach is summarised in Figure 8.

Define	category	set

Train	attention	network
on	in-set	examples

Evaluate	attention
network	on	in-set

examples

Evaluate	attention
network	on	out-of-set

examples

Evaluate	standard
VGG16	on	out-of-set

examples

Evaluate	standard
VGG16	on	in-set
examples

Change	in
in-set	accuracy

Change	in
out-of-set	accuracy

Figure 8: Experiment design for characterising how the nature of a task (controlled by the choice
of category set) determines the extent to which visual attention is useful (how much effect it has
on image-classification accuracy). This procedure is repeated for each category set we define in
Section 3.1.

3.1 Category sets

Let a category set be a grouping of ImageNet categories. One way of forming a
category set is to group together categories that are conceptually similar. The
result is a semantic category set. We can alternatively form category sets such
that they have desired quantitative properties. We define three types of cate-
gory set in this way: one type for each property that we study. First, we choose
a collection of difficulty-based category sets such that they vary substantially
in difficulty but not in size or visual similarity. Second are size-based category
sets, which are diverse in size but are approximately fixed in difficulty and sim-
ilarity. Third, similarity-based category sets have a range of visual similarity
values but nearly constant difficulty and exactly constant size.
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Semantic sets

We define six semantic category sets (Table 1), each of which being a grouping
of conceptually similar ImageNet categories.

Category set Example categories
kitchen items spatula, frying pan, coffee mug, refrigerator, mixing bowl
wearable items sweatshirt, fur coat, knee pad, bikini, backpack
cats tabby, Siamese cat, lion, snow leopard, Persian cat
land transport golf cart, moped, fire engine, unicycle, school bus
birds magpie, hen, ostrich, albatross, pelican
dogs beagle, Chihuahua, coyote, Siberian husky, red fox

Table 1: Examples members of six semantic category sets. Each set contains conceptually similar
ImageNet categories.

Difficulty-based sets

Difficulty-based category sets vary in difficulty but are of the same size and
approximately the same visual similarity. Let the difficulty of a generic category
set, C, be the mean error rate of a standard VGG16 on categories in that category
set:

difficulty(C) =
1
|C|

∑

ci∈C
(1− accuracy(ci)) (6)

where accuracy is measured on a scale from 0 to 1. We vary this property across
20 initial difficulty category sets, A1, . . . ,A20. To form these, we first arrange
the 1000 ImageNet categories into a list, c1, . . . , c1000, sorted by accuracy. We
then split this list into 20 disjoint sets, each containing 50 categories:

A1 = {c1, . . . , c50}

A2 = {c51, . . . , c100}
...

A20 = {c951, . . . , c1000}

(7)

This is such that

difficulty(A1)≤ difficulty(A2)≤ · · · ≤ difficulty(A20) (8)

Category sets A1, . . . ,A20 span a large range of difficulties, but the coverage of
difficulty in the [0.5, 0.8] interval is sparse (Figure 9). To improve coverage,
we randomly sample 5 additional difficulty-based category sets, A21, . . . ,A25,
using Algorithm 1 (Appendix A). This procedure is designed to minimise vari-
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ation in visual similarity across category sets. The sets are equally sized.

0.0 0.2 0.4 0.6 0.8
Difficulty

1, , 20
21, , 25

Figure 9: Difficulty values of 25 difficulty-based category sets. 20 initial difficulty category
sets, A1, . . . ,A20, provide poor coverage of the difficulty range between 0.5 and 0.8. In order
to improve coverage, we use Algorithm 1 to sample an additional five difficulty category sets,
A21, . . . ,A25.

Size-based sets

Size-based category sets vary in the number of categories they contain but have
approximately the same difficulty and visual similarity. We sample 10 size-
based category sets, B1, . . . ,B10, where

|Bi| ∈ {2, 4,8, 16,32, 64,96,128, 192,256} (9)

We use (approximately) geometric spacing of sizes based on the intuition of
diminishing marginal effect. If category-set size does impact the usefulness of
attention, we expect the difference between a 2-category set and a 3-category
set to be greater than the difference between a 200-category set and a 201-
category set. Based on this, a natural choice of sizes is |Bi| ∈ {21, 22, . . . , 28}.
But this has undesirable gaps in size towards the upper end of the range. So, in
addition to this set of sizes, we include 96 and 192. With Algorithm 2 (Appendix
A), we aim to ensure that size-based category sets have approximately equal
difficulty and visual similarity.

Similarity-based sets

Visual similarity can be measured in many ways (Zhang et al, 2018). Our ap-
proach uses VGG16 representations of ImageNet examples. To find the repre-
sentation of an image, we pass the image forwards through VGG16 and find
the activation of the penultimate layer (a 4096-dimensional vector). This is the
same approach as followed by Socher et al (2014) and Birodkar et al (2019).
For category ci we compute the representations of all examples, x i, j , in it. Then
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we average these to obtain ri , a category representation for ci:

ri =
1
|ci|

|ci |
∑

j

VGG′(x i, j) (10)

where |ci| denotes the number of examples in ci , and VGG′ denotes VGG16 with
its final layer removed. We define the visual similarity, si, j , of categories i and
j as the cosine similarity between ri and r j:

si, j =
ri · r j

‖ri‖‖r j‖
(11)

We define the visual similarity of a generic category set, C, as the mean pair-
wise similarity of the categories in it:

similarity(C) =
1

|C|2 − |C|

∑

(i, j)∈C×C

si, j1(i 6= j) (12)

where C × C denotes the Cartesian product of C with itself and 1 represents
an indicator function. Using Algorithm 3 (Appendix A), we randomly sample
20 similarity-based category sets, E1, . . . ,E20, such that there is a substantial
range in similarity while maintaining approximately equal difficulty. For all i,
|Ei|= 50.

3.2 Neural networks

Following Lindsay and Miller (2018), we use an ImageNet-pretrained VGG16
(Section 2.3) as a base neural network. This network computes a probability
distribution over category labels, y1, . . . , y1000, for a given image, x:

p(y|x) = VGG(x) (13)

We decompose the network into two parts. The convolutional layers, VGG1,
transform x ∈ R224×224×3 to a hidden representation, h ∈ R7×7×512. The fully-
connected layers, VGG2, transform h to p(y|x). That is,

VGG1 : x → h (14)

VGG2 : h→ p(y|x) (15)
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We define attention as a linear weighting of h by nonnegative attention weights,
z ∈ R7×7×512

≥0 . Our attention network computes

p(y|x , z) = VGG2(z � VGG1(x)) (16)

where � denotes an elementwise multiplication. We treat the pretrained VGG1

and VGG2 as fixed functions. The attention weights, z, are the only trainable
parameters.

3.3 Training

For each category set we train a separate attention network solely on examples
from that set’s categories. All attention weights are initialised to 1. This means
that, at the beginning of training, the attention network has the same input-
output mapping as a standard VGG16 (an elementwise multiplication by an
array of ones has no effect). The heterogeneity of the pretrained weights in
our attention network ensures that weight-space symmetry (Goodfellow et al,
2016) should not be an issue.

Gradients are computed using automatic differentiation. To update the atten-
tion weights we use Adam (Kingma and Ba, 2015), a variant of stochastic gra-
dient descent, with a learning rate of 0.0003 (Karpathy, 2019). Each update
to the attention weights is computed using a batch of 256 images. The im-
ages are preprocessed using the same procedure as used by Simonyan and Zis-
serman (2015). 10 percent of the training set is reserved as a validation set
for evaluating the loss function after each epoch (full pass through the train-
ing set). Letting J v

t be the validation-set loss at epoch t, we stop training if
(J v

t−1 − J v
t )/J

v
t−1 < 0.001 for two consecutive epochs. Unless this condition is

met first, training ends after 300 epochs.

3.4 Evaluation

We measure performance on the publicly available ImageNet test set (Section
2.2) using two measures. For a generic category set, C, the in-set accuracy is
the rate of correctly classifying examples from C:

in-set accuracy=
1

∑|D|
i 1(y

t
i ∈ C)

|D|
∑

i

1(argmax(p(y|x t
i , z)) = y t

i )1(y
t
i ∈ C)

(17)
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where D = {(x t
1, y t

1), . . . , (x t
N , y t

N )} denotes the public ImageNet test set (N =
50, 000). The out-of-set accuracy is the rate for all other ImageNet examples:

out-of-set accuracy=
1

∑|D|
i 1(y

t
i 6∈ C)

|D|
∑

i

1(argmax(p(y|x t
i , z)) = y t

i )1(y
t
i 6∈ C)

(18)

For both measures, 0 is the minimum value and 1 is the maximum.
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4 Results

In our experiments we modelled the cognitive task of learning to apply visual
attention for a limited set of object types. To do this, we first defined a series
of category sets (groupings of ImageNet categories). These were designed to
vary with respect to three category-set properties (difficulty, size, visual similar-
ity), which we expected to influence the performance-altering effect of visual
attention. For each category set we trained a new attention network. Then
we compared each attention network to a standard VGG16 in terms of in-set
accuracy (the rate of correctly classifying examples from within the category
set used for training) and out-of-set accuracy (the rate for all other ImageNet
examples).

4.1 Semantic sets

In Section 3.1 we defined six semantic category sets. Each of these is a grouping
of conceptually similar ImageNet categories. In Figure 10 we see that visual
attention’s impact on image-classification accuracy is highly dependent on the
category set to which it is applied. The reason for this is not obvious. Indeed,
in Section 1 we referenced this finding as part of the motivation for this work.

kitchen
items

wearable
items

cats land
transport

birds dogs

Category set

0.10

0.05

0.00

0.05

0.10

0.15

Ac
cu

ra
cy

 c
ha

ng
e

Source of test examples
in-set categories
out-of-set categories

Figure 10: Classification accuracy (relative to a standard VGG16) of attention networks trained
on six semantic category sets. Each semantic category set is a grouping of conceptually similar
ImageNet categories. We see substantial variation in the boost in in-set accuracy that attention
produces: a standard deviation of 0.05, where accuracy is measured on a scale from 0 to 1.

In Section 1 we suggested that differences in the difficulty, size and visual sim-
ilarity of semantic category sets might explain the variation. In Figure 11 we
show that these properties vary substantially between the sets. Table 2 shows
that there might be a link between the results in Figure 10 and the properties
in Figure 11. But, with high associated p values, it is not possible to confi-
dently rule out the possibility that the correlations are simply due to unrelated
coincidence.

17



kitchen
items

wearable
items

cats land
transport

birds dogs

Category set

0.0

0.6
Di

ffi
cu

lty

kitchen
items

wearable
items

cats land
transport

birds dogs

Category set

0

150

Si
ze

kitchen
items

wearable
items

cats land
transport

birds dogs

Category set

0

1

Si
m

ila
rit

y

Figure 11: Properties of the semantic category sets referenced in Figure 10. Difficulty is the
average error rate of a standard VGG16 on examples in the category set. Size is the number of
categories in the set. Similarity is the mean cosine similarity of VGG16 representations of images
in the set.

Property ρ pρ τb pτ
difficulty 0.66 0.16 0.60 0.14
size -0.71 0.11 -0.60 0.14
similarity -0.31 0.54 -0.20 0.72

Table 2: Rank-order correlation coefficients (Spearman’s ρ and Kendall’s τb), along with asso-
ciated p values, computed using the results in Figure 10 and the properties in Figure 11. These
coefficients suggest that the difficulty, size and visual similarity might help to explain the dif-
ferential impact of visual attention in image recognition. But there is high uncertainty in these
estimates. We cannot confidently exclude the possibility that these relations occurred by unre-
lated coincidence.

4.2 Difficulty-based sets

In Section 3.1 we defined the difficulty of a category set as the average error
rate of a standard VGG16 on examples in the category set. We defined 25
difficulty-based category sets. These vary in difficulty but are of the same size
and approximately the same visual similarity. In Figure 12 we see that higher
category-set difficulty corresponds to a greater performance impact of visual
attention (correlation reported in Table 3).
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Figure 12: Classification accuracy of attention networks trained on 25 difficulty-based category
sets. These sets vary in difficulty but are of the same size and approximately the same visual
similarity. Left: absolute accuracy of the attention networks before and after training. Right:
relative accuracy (with respect to a standard VGG16) of the attention networks after training.

18



4.3 Size-based sets

In Section 3.1 we defined 10 sized-based category sets. These range in size
(number of categories) but are approximately fixed in difficulty and visual sim-
ilarity. Our results suggest that visual attention’s impact on classification accu-
racy is less for larger category sets (Figure 13; Table 3).
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Figure 13: Classification accuracy (relative to a standard VGG16) of attention networks trained
on 20 size-based category sets. These sets range in size (number of categories) but are approxi-
mately fixed in difficulty and visual similarity. Left: original experiment (10 sets). Right: repeat
experiment with a different collection of category sets (10 sets).

4.4 Similarity-based sets

In Section 3.1 we defined the visual similarity of a category set as the mean
cosine similarity of VGG16 representations of images in the category set. We
defined 20 similarity-based category sets. These differ in visual similarity but
are of the same size and approximately the same difficulty. The evidence pre-
sented in Figure 14 suggests that visual attention is decreasingly impactful as
the visual similarity of a category set increases (correlation reported in Table
3).
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Figure 14: Classification accuracy (relative to a standard VGG16) of attention networks trained
on 40 similarity-based category sets. These differ in visual similarity but are of the same size and
approximately the same difficulty. Left: original experiment (20 sets). Right: repeat experiment
with a different collection of category sets (20 sets).

Figure 15 shows least-squares linear regression applied to the in-set results pre-
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sented in Figures 12-14. The results of repeat experiments were incorporated
in this. We perform a base-2 logarithmic transformation of category-set size
before fitting a linear curve.
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Figure 15: Least-squares linear regression applied to the changes in in-set accuracy shown in
Figures 12-14. Data from repeat experiments is combined with that from original experiments.
Size is transformed logarthmically (with base 2).

Table 3 presents the parameters of the least-squares lines shown in Figure 15. It
also includes rank-order correlation coefficients, which can be compared with
those in Table 2. We note stronger correlations and higher confidence in Table
3. Thus, the results in Figures 12-14 help us to better characterise when visual
attention is useful.

Property ρ τb β0 β1 R2

difficulty 0.96 0.85 0.04 0.30 0.92
size -0.97 -0.91 0.39 -0.04 0.94
similarity -0.52 -0.38 0.21 -0.11 0.37

Table 3: Correlation statistics (Spearman’s ρ; Kendall’s τb; R2) and regression parameters (in-
tercept, β0; slope, β1) for the in-set data shown in Figures 12-14. Data from repeat experiments
is combined with that from original experiments. Size is transformed logarthmically (with base
2). For every coefficient, p < 0.001.
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5 Discussion

Our empirical observations appear to show that the nature of a task has signifi-
cant influence on the usefulness of attention. We suggest that two of our sets of
results (from the difficulty and size experiments) have intuitive explanations,
and one set (from the visual-similarity experiment) does not.

5.1 Difficulty-based sets

The more difficult a category set is (as judged by how frequently a standard
VGG16 misclassifies in-set images), the greater the performance benefit of in-
troducing attention. To understand why, we need to think about the behaviour
of the neural networks we use, and also about the ways in which images vary.
What is it about images from a given category that makes VGG16 classify them
with high or low accuracy?

Training a neural network involves tradeoffs between weights (Sutton et al,
2006). We explain this with reference to the simple feedforward network shown
in Figure 1. Let us assume the network is a three-way classifier. For a given in-
put, x , it computes a probability distribution over three possible category labels,
y1, y2, y3. The activity, h2, of the second hidden layer is a representation of x ,
and h2,1 is a single feature (element of this vector).

Suppose that, for x belonging to category y1, h2,1 is the single most useful
feature for identifying x ’s true label. But for inputs from other categories, h2,1

provides no clue, and simply contributes random noise that drowns out useful
information. Thus, there is a weight tradeoff: increasing the weights on h2,1

improves accuracy for some examples and reduces accuracy for others. During
training, the classifier tunes its weights so as to maximise average accuracy
across the whole training set. Suppose that the network learns to place low
weight on h2,1, which we have said is the strongest predictor of examples from
category y1. As a result, if the true label of x is y1, the network classifies it with
low accuracy.

By analogy, we can see why a convolutional network’s accuracy can vary sub-
stantially across categories (Russakovsky et al, 2014). For a given category, yi ,
there is some set of features that most strongly indicate that an image is from yi .
A network’s accuracy on yi is low if emphasising yi ’s most indicative features
is incompatible with good overall performance.

This helps to explain the difficulty results (greater benefit of attention for more
difficult category sets; Figure 12). We have established that a category set’s
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high difficulty (low VGG16 accuracy) is partly due to the suppression of features
that would aid classification of images belonging to that category set. The task
we study, in which attention weights are tuned on a small subset of ImageNet
categories (most category sets contained fewer than 100), represents a relax-
ation of the weight tradeoff. With fewer categories to account for, weights
can emphasise useful features that were suppressed before. This improves the
network’s discriminative power on images from the training category set. The
more difficult the category set, the more pronounced this boost is.

With reference to human cognition, this explanation seems to make sense. Our
experiments represent the cognitive task of learning to apply attention so as to
be more discerning with respect to a restricted set of objects. This is analogous
to the way an art critic develops an eye for assessing paintings (Koide et al,
2015). Our results suggest that the payoff of specialising is not equal for all
subjects of expertise. This seems true in reality. Compared to a layperson, a
radiologist might be many times more accurate at classifying medical images.
In contrast, we have no trouble discerning bicycles from bananas, and more
experience will not change this. In between these two examples there lies a
spectrum of tasks offering varying returns to expertise. This is what we see
in the difficulty experiments.

Difficulty is a broad measure with many contributors. For example, Russakovsky
et al (2014) identified eight ways in which ImageNet examples can vary (eg,
shape distinctiveness, real-world size). These are likely to affect difficulty. It
can be argued that our result is especially compelling in light of this. Despite
many possible complicating factors, we see a strong correlation between task
difficulty and the performance boost of attention. In Section 6 we suggest teas-
ing apart these factors to better understand what is going on. For the purpose
of interpreting the current work, it should be considered that our results could
capture idiosyncrasies of the dataset rather than general phenomena. But we
have no reason to believe these are dominant.

More prosaic factors might underlie the difficulty results. For example, a ceiling
effect might be at play. Suppose a category set’s images are classified with high
accuracy by VGG16. There is not much room for improvement in accuracy:
even if incorporating attention is useful, accuracy has an upper limit of 100
percent. A ceiling effect would be identifiable by a concave regression curve
(if we did not constrain it to be linear). Our data might hint at this, but rather
ambiguously: the point cloud in the left-hand plot of Figure 15 appears to bend
slightly in the middle. If a ceiling effect were the full explanation, this would
probably be more pronounced.

22



5.2 Size-based sets

The bigger a category set is (the more categories it contains), the smaller the
performance benefit of introducing attention. Again, the weight-tradeoff phe-
nomenon (Section 5.1) is an important explanatory effect. If there are only
two categories of images to classify, then an attention network can focus on
the features that allow it to discern between those two categories. The more
categories there are, the stronger the tradeoffs between features.

This appears to agree with our intuitions about human cognition. There seems
to be a breadth-depth tradeoff in expertise: the broader our task, the more
thinly we spread ourselves. Assuming all topics are of equal size and difficulty,
it is easier to prepare for a two-topic exam than a ten-topic exam. Likewise,
in the experiments we see that the performance boost produced by attention is
greater for narrower tasks (category sets with fewer categories).

Another explanatory factor is noteworthy. Across all our experiments, the in-
set accuracy of an attention network exceeds that of a standard VGG16. At
the same time, out-of-set accuracy is lower for attention networks. To some
extent, this can be interpreted as the attention network learning the category
imbalance in its training set. That is, it works out that some categories do
not appear in the training data. Thus it can improve classification accuracy by
systematically biasing predictions away from those categories. In Section 6 we
suggest a way of measuring this effect.

5.3 Similarity-based sets

The more visually similar a category set is (as judged by how similarly VGG16
represents images from the set’s categories), the smaller the performance ben-
efit of introducing attention. In our view, this seems odd. The discriminative
ability of a neural network is determined by how it extracts and manipulates
representations of an input (Section 5.1). In our implementation, attention al-
lows a network to reweight features of a representation so that it can better
discern between categories. Suppose a category set has high visual similar-
ity. By our own definition, this means there is relatively high consistency in the
way VGG16 represents images from the category set. In other words, in a high-
similarity category set, there is low variation in which features are most
important. It should, therefore, be straightforward for the attention network
to learn how to optimally weight its features.

If visually similar categories have similar mean representations, then in vec-
tor space the representations for dog categories should cluster, as should the
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representations for cat categories, and so on. One way of checking this is to
inspect the clusters computed using t-SNE, a data-visualisation technique (van
der Maaten and Hinton, 2008; Karpathy, 2014; Wattenberg et al, 2016). We see
in Figure 16 that members of the same cluster are sometimes visually similar
(according to human judgement) and sometimes quite dissimilar. This suggests
that, in some sense, the category representations do not capture visual appear-
ance in the way we expect. Related to this, Geirhos et al (2019) showed that
ImageNet-trained convolutional networks prefer to use texture, not shape, to
recognise images. This has implications for the way they represent images.

Figure 16: t-SNE visualisation of the representations used to compute the visual similarity of
categories. Each point represents a 4096-dimensional vector projected into two dimensions by
t-SNE. Members of the same cluster are sometimes visually similar (according to human judge-
ment) and sometimes quite dissimilar. The green box highlights an example of the former case;
the red box, the latter. Green box: (killer whale, dugong, sea lion, Chihuahua, Japanese spaniel,
Maltese dog, Pekinese, Shih-Tzu, Blenheim spaniel, papillon, toy terrier, Rhodesian ridgeback,
Afghan hound, basset, beagle bloodhound, bluetick, black-and-tan coonhound, Walker hound,
English foxhound, redbone, borzoi, Irish wolfhound). Red box: (barracouta, eel, coho, rock
beauty, anemone fish, sturgeon, gar, balloon, ballpoint, Band-Aid, banjo, bannister, barbell, bar-
ber chair, bolo tie, bonnet, bookcase, bookshop, bottlecap, bow, bow tie).

We note that our approach has precedent, both in its use of final-layer represen-
tations (Socher et al, 2014; Birodkar et al, 2019), and in the averaging of repre-
sentations within a category (Karpathy et al, 2014; Lindsay and Miller, 2018).
It also has justification with respect to neuroscience (Kriegeskorte, 2015). As
we go deeper into the layers of a convolutional neural network, the representa-
tions become better correlated with the representations in the inferior tempo-
ral cortex of primates (Khaligh-Razavi and Kriegeskorte, 2014). This region of
the brain is known to produce representations with strong categorical divisions
(Kriegeskorte et al, 2008). Thus, we expect the penultimate-layer representa-
tion of VGG16 to have highly category-specific features, making them useful for
comparison. But it appears that our approach does not capture the effect that
our intuition implies. In Section 6 we suggest an alternative way of measuring
visual similarity.
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6 Future work

We propose natural extensions of our work that seem both promising and tractable.
Some are motivated by the pursuit of greater breadth of understanding; others
by a desire for more detail.

Assessing the generalisation of our results

With VGG16 and ImageNet, we found statistically significant (p < 0.001) vari-
ation in the usefulness of attention when we vary the properties of an image-
recognition task. Using this combination of convolutional architecture and
dataset is accepted to be a state-of-the-art approach to modelling human vi-
sual perception. So our findings are noteworthy in their own right. Confirming
this effect in other experimental setups (with different neural networks and
image datasets) would strengthen our confidence in the existence of general
phenomena.

Allowing covariance between category-set properties

We designed our experiments to minimise covariance in the category-set prop-
erties we varied (difficulty, size, visual similarity). That is, while varying one
property, we aimed to keep the others constant. This was in an effort to isolate
the effect of each property on the usefulness of attention. Now that we have
established the effects of these properties independently, we could consider the
more complex case of when they vary together.

Automatically selecting semantic category sets

In our experiments, the semantic category sets were six manually-selected groups
of conceptually similar ImageNet categories. These allowed us to establish that
visual attention seems to be more performance-enhancing for some semantic
category sets than others. If desired, we could scale up the semantic-set experi-
ment by automating the process of grouping ImageNet categories into semantic
sets. With more results, we could more fully characterise how the usefulness
of attention differs between conceptually distinct tasks.

We suggest two possible ways of doing this. In the first approach, we would
take advantage of the hierarchical organisation of ImageNet categories. This
tree structure is encoded as an Extensible Markup Language (XML) file, and is
available from the ImageNet website (image-net.org). By parsing the tree,
we would automatically select groups of categories with common conceptual
ancestors. In the second approach, we would measure the conceptual similarity
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of categories using a word-representation technique like word2vec (Mikolov
et al, 2013) or GloVe (Pennington et al, 2014). We would compute a vector
representation of each category label. Then we would quantify the semantic
similarity of two categories by comparing the representations of their labels
(eg, with cosine similarity). In this approach, semantic similarity would be a
continuous quantity. Thus, it would allow us to characterise effects more finely
than the first approach would.

Decomposing difficulty

We noted in Section 5.1 that difficulty is determined by a number of factors. If
we can quantitatively measure, isolate and control the constituent components
of difficulty, we could better understand the mechanisms at play. Visual clutter
is an example of such a factor. It seems to be a key reason why we need to apply
visual attention (Walther et al, 2005; Mnih et al, 2014). It is also readily quan-
tified: Alexe et al (2012) demonstrated a category-agnostic object detector that
evaluates the probability that a given window in an image contains an object
(rather than background). If we desire a more fine-grained understanding of
the difficulty results, this would be a good place to start.

Quantifying the effect of category-imbalance-learning

In Section 5.2 we suggested that a category-imbalance effect probably influ-
enced the size-experiment results to some extent. That is, attention networks
achieved accuracy improvements simply by noticing the absence of some cat-
egories in the training set. We propose a method for quantitatively estimating
the size of this effect for a given category set, C. First, we would compute the
predictions of VGG16, namely p(y|x) for all x . Second, for each prediction,
p(y|x), we would remove weight from all yi corresponding to categories not
in C. We would redistribute this weight uniformly across all yi corresponding
to categories in C. The result would be a set of modified predictions. Third,
we would compute the accuracy of the modified predictions. When compared
to the accuracy of the original predictions, this would estimate the size of the
category-imbalance effect. In other words, it would tell us how much of a per-
formance boost can be achieved with a trivial adjustment.

Using an alternative measure of visual similarity

In our experiments, we defined the visual similarity of two ImageNet categories
as the cosine similarity of their mean final-layer VGG16 representations (Sec-
tion 3.1). Perhaps the most promising alternative to this is the perceptual sim-
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ilarity measure proposed by Zhang et al (2018). Like ours, their method uses
representations extracted by VGG16. But, unlike our approach, theirs uses rep-
resentations from early layers in the network. For each image, activations at
multiple layers are computed. When comparing two images, a distance func-
tion compares the two corresponding sets of activations. This distance function
includes a learnt linear reweighting of features. The method produces human-
like judgements of visual similarity.

We were aware of this approach when designing our experiments. But we chose
not to use it. It ran too slowly in our preliminary tests to be scalable to the
problem in which we were interested. With some work, it might be possible to
make this approach usable on a reasonable timescale.

27



7 Conclusion

When is visual attention useful? We set out to answer this by studying the cog-
nitive task of learning to apply attention to a restricted set of image categories.
We show that incorporating a trainable explicit attention mechanism into an
otherwise fixed deep convolutional neural network enables enhanced perfor-
mance on this task. Manipulating the nature of the task—controlling which
categories the network is exposed to during training—reliably produces vari-
ation in the performance impact of visual attention. According to our results,
attention becomes more useful with increasing task difficulty, less useful with
increasing task size, and less useful with increasing visual similarity within a
task.

These findings have implications for cognitive science. Deep convolutional net-
works are state-of-the-art models of the human visual system. Thus the be-
havioural patterns that they display can be useful for two purposes. First, they
can help explain pre-existing empirical data. Second, they can inform new hy-
potheses about human cognition, which can then be tested on human subjects.
At the same time, our work contributes to the machine-learning community’s
understanding of visual attention. We systematically tested an attention mecha-
nism in a series of easily interpreted experiments. Thus we provide information
that can inform neural-network designers deciding whether to incorporate at-
tention for visual tasks. For example, the results suggest that for every doubling
of task size (the number of categories on which we want attention to specialise;
we assume average difficulty and visual similarity) visual attention’s expected
impact on accuracy is reduced by 0.04 (4 percentage points if measuring on a 0-
100 scale). Our contribution, therefore, pushes forward both basic and applied
science.

28



8 References

Alexe, Deselaers, Ferrari (2012). Measuring the objectness of image windows.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Ba, Mnih, Kavukcuoglu (2015). Multiple object recognition with visual atten-
tion. International Conference on Learning Representations.

Birodkar, Mobahi, Bengio (2019). Semantic redundancies in image-classification
datasets: the 10% you don’t need. arXiv.

Bostock (2018). ImageNet hierarchy. observablehq.com/@mbostock/
imagenet-hierarchy.

Carrasco (2011). Visual attention: the past 25 years. Vision Research.

Chen, Zhang, Xiao, Nie, Shao, Liu, Chua (2017). SCA-CNN: spatial and channel-
wise attention in convolutional networks for image captioning. Conference on
Computer Vision and Pattern Recognition.

Cybenko (1989). Approximations by superpositions of sigmoidal functions.
Mathematics of Control, Signals, and Systems.

Deng, Dong, Socher, Li, Li, Fei-Fei (2009). ImageNet: a large-scale hierarchical
image database. Conference on Computer Vision and Pattern Recognition.

Denil, Bazzani, Larochelle, de Freitas (2012). Learning where to attend with
deep architectures for image tracking. Neural Computation.

Eriksen, St James (1986). Visual attention within and around the field of focal
attention: a zoom lens model. Perception and Psychophysics.

Geirhos, Rubisch, Michaelis, Bethge, Wichmann, Brendel (2019). ImageNet-
trained CNNs are biased towards texture; increasing shape bias improves accu-
racy and robustness. International Conference on Learning Representations.

Gilpin, Bau, Yuan, Bajwa, Specter, Kagal (2018). Explaining explanations: an
overview of interpretability in machine learning. International Conference on
Data Science and Advanced Analytics.

Hassabis, Kumaran, Summerfield, Botvinick (2017). Neuroscience-inspired ar-
tificial intelligence. Neuron.

Hebb (1949). The Organization of Behavior.

Hill (2017). Deep learning for emotion recognition in cartoons. hako.github.io/
dissertation.

29



Hinton, Osindero, Teh (2006). A fast learning algorithm for deep belief nets.
Neural Computation.

Hornik, Stinchcombe, White (1989). Multilayer feedforward networks are uni-
versal approximators. Neural Networks.

Jaderberg, Simonyan, Zisserman, Kavukcuoglu (2015). Spatial transformer
networks. Neural Information Processing Systems.

Jarrett, Kavukcuoglu, Ranzato, LeCun (2009). What is the best multi-stage
architecture for object recognition? International Conference on Computer Vi-
sion.

Karpathy (2014). t-SNE visualization of CNN codes. cs.stanford.edu/
people/karpathy/cnnembed.

Karpathy, Joulin, Fei-Fei (2014). Deep fragment embeddings for bidirectional
image sentence mapping. Neural Information Processing Systems.

Karpathy (2019). A recipe for training neural networks. karpathy.github.io/
2019/04/25/recipe.

Khaligh-Razavi, Kriegeskorte (2014). Deep supervised, but not unsupervised,
models may explain IT cortical representation. PLOS Computational Biology.

Kingma, Ba (2015). Adam: a method for stochastic optimization. International
Conference on Learning Representations.

Koide, Kubo, Nishida, Shibata, Ikeda (2015). Art expertise reduces influence
of visual salience on fixation in viewing abstract paintings. PLOS One.

Kriegeskorte, Mur, Ruff, Kiani, Bodurka, Esteky, Tanaka, Bandettini (2008).
Matching categorical object representations in inferior temporal cortex of man
and monkey. Neuron.

Kriegeskorte (2015). Deep neural networks: a new framework for modeling
biological vision and brain information processing. Annual Review of Vision
Science.

Kriegeskorte, Douglas (2018). Cognitive computational neuroscience. Nature
Neuroscience.

Krizhevsky, Sutskever, Hinton (2012). ImageNet classification with deep con-
volutional neural networks. Neural Information Processing Systems.

Kruschke (1992). ALCOVE: an examplar-based connectionist model of category
learning. Psychological Review.

30



Larochelle, Hinton (2010). Learning to combine foveal glimpses with a third-
order Boltzmann machine. Neural Information Processing Systems.

Lindsay (2015). Feature-based attention in convolutional neural networks.
arXiv.

Lindsay, Miller (2018). How biological attention mechanisms improve task per-
formance in a large-scale visual system model. eLife.

Liu, Hou (2011). Global feature-based attention to orientation. Journal of
Vision.

Marr, Poggio (1977). From understanding computation to understanding neu-
ral circuitry. Neuronal Mechanisms in Visual Perception.

Marr (1982). Vision: A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information.

McCulloch, Pitts (1943). A logical calculus of ideas immanent in nervous ac-
tivity. Bulletin of Mathematical Biophysics.

Mikolov, Chen, Corrado, Dean (2013). Efficient estimation of word represen-
tations in vector space. International Conference on Learning Representations.

Miller (1995). WordNet: a lexical database for English. Communications of
the ACM.

Mnih, Hees, Graves, Kavukcuoglu (2014). Recurrent models of visual attention.
Neural Information Processing Systems.

Nobre (2001). Orienting attention to instants in time. Neuropsychologia.

Olson (2001). Object-based vision and attention in primates. Current Opinions
in Neurobiology.

Pennington, Socher, Manning (2014). GloVe: global vectors for word represen-
tation. Empirical Methods in Natural Language Processing.

Ranzato (2014). On learning where to look. arXiv.

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bern-
stein, Berg, Fei-Fei (2014). ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision.

Saxe, Koh, Chen, Bhand, Suresh, Ng (2011). On random weights and unsuper-
vised feature learning. International Conference on Machine Learning.

Schrimpf, Kubilius, Hong, Majaj, Rajalingham, Issa, Kar, Bashivan, Prescott-Roy,

31



Schmidt, Yamins, DiCarlo (2018). Brain-Score: which artificial neural network
for object recognition is most brain-like? bioRxiv.

Simonyan, Zisserman (2015). Very deep convolutional networks for large-scale
image recognition. International Conference on Learning Representations.

Socher, Karpathy, Le, Manning, Ng (2014). Grounded compositional semantics
for finding and describing images with sentences. Transactions of the Associa-
tion for Computational Linguistics.

Stollenga, Masci, Gomez, Schmidhuber (2014). Deep networks with internal
selective attention through feedback connections. Neural Information Process-
ing Systems.

Sutskever, Vinyals, Le (2014). Sequence to sequence learning with neural net-
works. Neural Information Processing Systems.

Sutton, Sindelar, McCallum (2006). Reducing weight undertraining in struc-
tured discriminative learning. Human Language Technology Conference of the
NAACL.

van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Se-
nior, Kavukcuoglu (2016). WaveNet: a generative model for raw audio. arXiv.

van der Maaten, Hinton (2008). Visualizing data using t-SNE. Journal of Ma-
chine Learning Research.

Velickovic (2018). TikZ. github.com/PetarV-/TikZ.

Walther, Rutishauser, Koch, Perona (2005). Selective visual attention enables
learning and recognition of multiple objects in cluttered scenes. Computer Vi-
sion and Image Understanding.

Wattenberg, Viegas, Johnson (2016). How to use t-SNE effectively. Distill.

Xu, Ba, Kiros, Courville, Salakhutdinov, Zemel, Bengio (2015). Show, attend
and tell: neural image caption generation with visual attention. arXiv.

Yamins, DiCarlo (2016). Using goal-driven deep learning models to understand
sensory cortex. Nature Neuroscience.

Zhang, Isola, Efros, Shechtman, Wang (2018). The unreasonable effectiveness
of deep features as a perceptual metric. Conference on Computer Vision and
Pattern Recognition.

32



A Algorithms

Algorithm 1: Sampling difficulty-based category sets (Python 3)

thresholds = [0.35, 0.4, 0.45, 0.5, 0.55]
intervals_covered = False
best_score = infinity
best_sets = None

for i in range(10000):
candidate_sets = [sample_difficulty_set(t) for t in thresholds]
intervals_covered = assess_difficulty_coverage(candidate_sets)
candidate_score = max_similarity_deviation(candidate_sets)

if intervals_covered is True and candidate_score < best_score:
best_sets = candidate_sets
best_score = candidate_score

if best_sets is not None:
return best_sets

Algorithm 1 uses the following functions.

sample_difficulty_set(t) randomly samples, without replacement,
50 categories from the subset satisfying accuracy(ci)≤ t.

assess_difficulty_coverage(A21, . . . ,A25) is a Boolean function, re-
turning True if each of the difficulty intervals

{[d0, d0 + 0.05] for d0 ∈ [0.20, 0.35] with step 0.05} (19)

contains at least one category set.

Using the visual similarity definitions from Section 3.1,

max_similarity_deviation(A21, . . . ,A25) =

max

���

�

�

�

similarity(Ai)−µs

σs

�

�

�

�

for i ∈ [21,25]

��

(20)

where, with C = 1000 denoting the number of ImageNet categories, and
1 denoting an indicator function,

µs =
1

C2 − C

C
∑

i

C
∑

j

si, j1(i 6= j) (21)

σs =

√
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√

1
C2 − C

C
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i

C
∑

j

(si, j −µs)21(i 6= j) (22)
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Algorithm 2: Sampling size-based category sets (Python 3)

set_sizes = [2, 4, 8, 16, 32, 64, 96, 128, 192, 256]
best_score = infinity
best_sets = None

for i in range(10000):
candidate_sets = [sample_size_set(s) for s in set_sizes]
candidate_score = max_difficulty_similarity_deviation(candidate_sets)

if candidate_score < best_score:
best_sets = candidate_sets
best_score = candidate_score

if best_sets is not None:
return best_sets

In Algorithm 2, difficulty is defined as in Section 3.1, and the following defini-
tions are used.

max_difficulty_similarity_deviation(B1, . . . ,B10) =

max
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�

�

�

difficulty(Bi)−µd

σd

�

�

�

�

for i ∈ [1, 10]
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similarity(Bi)−µs
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for i ∈ [1, 10]
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(23)

µd =
1
C

C
∑

i

(1− accuracy(ci)) (24)

σd =

√

√

√

√

1
C

C
∑

i

((1− accuracy(ci))−µd)2 (25)

where C = 1000 is the number of ImageNet categories, and accuracy(ci)
denotes the mean accuracy of the base network on category ci . The func-
tion sample_size_set(s) randomly samples, without replacement, s Im-
ageNet categories.
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Algorithm 3: Sampling similarity-based category sets (Python 3)

sampling_window_ends = [50, 366, 682, 999]
best_score = infinity
best_sets = None

for i in range(10000):
seed_categories = sample_seeds()

for seed in seed_categories:
sorted_categories = sort_categories_by_similarity(seed)
candidate_sets = [

sample_similarity_set(sorted_categories, k)
for k in sampling_window_ends]

intervals_covered = assess_similarity_coverage(candidate_sets)
candidate_score = max_difficulty_deviation(candidate_sets)

if intervals_covered is True and candidate_score < best_score:
best_sets = candidate_sets
best_score = candidate_score

if best_sets is not None:
return best_sets

Algorithm 3 uses the following functions.

sample_seeds() randomly samples, without replacement, 5 ImageNet
categories.

sort_categories_by_similarity(seed) returns c1, . . . , c999, a list of
the ImageNet categories (excluding the seed) ordered by decreasing simi-
larity to the seed category.

sample_similarity_set([c1, . . . , c999], k) samples, without replacement,
50 categories from the first k elements of [c1, . . . , c999]. This can be viewed
as a sampled k-nearest-neighbour procedure.

assess_similarity_coverage(E1, . . . ,E20) is a Boolean function, re-
turning True if each of similarity intervals

{[s0, s0 + 0.05] for s0 ∈ [0.10, 0.55] with step 0.05} (26)

contains at least one category set.

Using the definitions from Section 3.1,

max_difficulty_deviation(E1, . . . ,E20) =

max
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for i ∈ [1,20]
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(27)
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B Loss curves
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Figure 17: In-training loss curves for the attention networks referenced in Figure 10 (semantic
category sets).
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Figure 18: In-training loss curves for the attention networks referenced in Figure 12 (difficulty-
based category sets).
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Figure 19: In-training loss curves for the attention networks referenced in the left-hand plot of
Figure 13 (size-based category sets; original experiment).
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Figure 20: In-training loss curves for the attention networks referenced in the right-hand plot of
Figure 13 (size-based category sets; repeat experiment).
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Figure 21: In-training loss curves for the attention networks referenced in the left-hand plot of
Figure 14 (similarity-based category sets; original experiment).
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Figure 22: In-training loss curves for the attention networks referenced in the right-hand plot of
Figure 14 (similarity-based category sets; repeat experiment).
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